
Computational Optimization Methods in Statistics, Econometrics and Finance

www.comisef.eu

WPS-003 23/09/2008

D. Cucina
A. di Salvatore
M. Protopapas

- Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 -

Noname manuscript No.
(will be inserted by the editor)

Meta-heuristic Methods for Outliers Detection in

Multivariate Time Series

Domenico Cucina · Antonietta di Salvatore · Mattheos Protopapas

Received: date / Accepted: date

Abstract In this article we use meta-heuristic meth-
ods to detect additive outliers in multivariate time se-

ries. The implemented algorithms are: simulated an-

nealing, threshold accepting and two different versions

of genetic algorithm. All of them use the same objec-
tive function, the generalized AIC-like criterion, and in

contrast with many of the existing methods, they don’t

require to specify a vector ARMA model for the data

and are able to detect any number of potential outliers

simultaneously. We used simulated time series and real
data to evaluate and compare the performance of the

proposed methods.

Keywords Genetic algorithm · Simulated annealing ·

Threshold accepting

1 Introduction

It is well known that outliers can arise for different rea-
sons in time series data. They may be due to occasional

unexpected events. Outliers are defined as observations

which appear to be inconsistent with the remainder of

the data set. The detection of outliers is an important

problem in time series analysis because it can have ad-
verse effects on model identification, parameter estima-

tion (Chang and Tiao, 1983) and forecasting (Chen and

Liu, 1993). The presence of just few items of anoma-

lous data can lead to model misspecification, biased

Domenico Cucina · Antonietta di Salvatore · Mattheos Protopa-
pas
Department of Statistics, Probability and Applied Statistics, Uni-
versity of Rome La Sapienza, Piazzale Aldo Moro 5, I-00100
Roma, Italy
E-mail: antonietta.disalvatore@uniroma1.it

1 Financial support from the EU Commission through MRTN-
CT-2006-034270 COMISEF is gratefully acknowledged.

parameter estimation, and poor forecasts. Therefore,
it is essential to identify them, estimate their magni-

tude and correct the time series. Several approaches

have been proposed in the literature for handling out-

liers in univariate time series. Among these methods
we can distinguish those based on an explicit model

(parametric approach) from those that use non-explicit

models (nonparametric approach). For parametric ap-

proach, (Fox, 1972) developed a likelihood ratio test

for detecting outliers in a pure autoregressive model,
(Chang and Tiao, 1983; Chang et al., 1988; Tsay, 1986;

1988) extended this test to an autoregressive integrated

moving-average (ARIMA) model and proposed an iter-

ative procedure for detecting multiple outliers. How-
ever, these procedures may fail to detect multiple out-

liers due to masking effects. They can also misspec-

ify “good” data points as outliers, resulting in what

is commonly referred to as the swamping or smear-

ing effect. (Chen and Liu, 1993) proposed a modified
iterative procedure to reduce masking effects by esti-

mating jointly the model parameters and the magni-

tudes of outlier effects. This procedure may also fail

since it starts with parameter estimation that assumes
no outliers in the data. For non-parametric approach,

(Ljung, 1989; 1993; Peña, 1990; Gómez et al., 1993;

Baragona and Battaglia, 1989; Battaglia and Barag-

ona, 1992) have proposed specific procedures based on

the relationship between the additive outliers and the
linear interpolator, while (Baragona et al., 2001) used

a genetic algorithm.

For multivariate time series, (Tsay et al., 2000) ex-

tend well established ARIMA-model-based procedures

for univariate time series to the multivariate framework,
(Galeano et al., 2006; Baragona and Battaglia, 2007)

find the linear combination of a multivariate time series

that maximizes one objective function; the first paper

2

used projection pursuit techniques while the latter em-

ploys independent component analysis (ICA); (Barbi-

eri, 1991) used a Bayesian method and finally a graphi-

cal method was explored by (Khattree and Naik, 1987).

In this article we propose three meta-heuristic al-
gorithms for identifying additive outliers in univariate

and multivariate time series. In particular we imple-

mented the simulated annealing, the threshold accept-

ing and two different versions of genetic algorithm that
distinguish themself according to the solution encod-

ing. Using the meta-heuristic algorithms for outlier de-

tection seems attractive because several outliers may

be processed simultaneously. The path through differ-

ent solutions could lead to the exploration of promising
regions of the solution space. Further refinement may

be accomplished by examining, for instance, the signif-

icance levels of the potential outlier estimated magni-

tudes. Note that almost all available methods for outlier
detection are iterative, but there is a crucial difference

with respect to the meta-heuristic algorithms. In this

latter case, any potential location may change through

the iterations. In existing methods, once a location has

been selected, it remains fixed in the subsequent iter-
ations. So, the meta-heuristic algorithms seem able to

provide more flexibility and adaptation to the outlier

detection problem. On the other hand, the computa-

tional efficiency is very important for the meta-heuristic
algorithms to be useful.

2 Meta-heuristic methods

Many optimization problems do not satisfy the neces-
sary conditions to guarantee the convergence of tra-

ditional numerical methods. For instance, in order to

apply the least square estimation we need a globally

convex likelihood function, however there are a number

of relevant cases with non convex likelihood functions
or functions with several local optima. Another class of

“hard” problems is where the solution space is discrete

and wide. These problems are known as combinatorial

problems. A simple approach to solve an instance of a
combinatorial problem is to list all the feasible solutions

of a given problem, evaluate their objective function,

and pick the best. However, for combinatorial problem

of a reasonable size, the complete enumeration of its

elements is not feasible, and most available searching
algorithms are likely to yield some local optimum as a

result (Rayward-Smith et al., 1996).

Meta-heuristic algorithms are often used to solve such

problem instances. Meta-heuristic methods don’t rely
on a set of strong assumptions about the optimization

problem, on the contrary, they are robust to changes

in the characteristics of the problem. But, on the other

side, they don’t produce a deterministic solution but

a high quality stochastic approximation to the global

optimum.

In this work we are interested in the following meth-

ods: simulated annealing, threshold accepting and ge-
netic algorithms. The first two are classified as local

search methods. Classical local search algorithm move

from a initial random solution xc to an other one, cho-

sen amongst the solutions of the neighborhood of xc,
that have a better value of the objective function. The

procedure is iterated until a fixed stopping criterion is

satisfied. However, those algorithms may get stuck to

local optima. To avoid this problem, the local search

algorithms we employ here, sometimes accept worse so-
lutions than the current one. Genetic algorithms have

been initially developed by (Holland, 1975) and they are

classified as population based methods, or evolutionary

algorithms. They work on a whole set of solutions that
is adapted simultaneously by imitating the evolution-

ary process of species that sexually reproduce.

We give a brief sketch of the three methods.

2.1 Simulated annealing

Simulated annealing (SA) is a random search technique
based on an analogy between the way in which a metal

cools and freezes into a minimum energy crystalline

structure (the annealing process) and the search for

a minimum in a more general system. The ideas that

form the basis of this method were first published by
(Metropolis et al., 1953) in an algorithm to simulate

the annealing process. Only thirty years later, (Kirk-

patrick et al., 1983) suggested that this type of simula-

tion could be used to search the feasible solutions of an
optimization problem, with the objective of converging

to an optimal solution which minimizes the objective

function.

In analogy with the annealing process, simulated an-

nealing is characterised by the presence of a control
parameter T called temperature. One simulation must

starts by choosing the initial temperature T0, the final

temperature Tf and a “cooling schedule” whereby the

parameter T is decreased. The simulation stops when
the temperature T assumes the value Tf . Different cool-

ing schedules are suggested in the literature, in our work

we use the geometric schedule :

Tt = αTt−1 (1)

where α is a constant close to 1.
The algorithm proceeds by choosing a random initial

solution xc as the current solution. A new potential so-

lution xn is drawn randomly in the neighborhood of xc

3

and it will always be accepted as the new current solu-

tion if it decreases the objective function. Moreover the

algorithm accepts also an increase of the objective func-

tion but only with a given probability. The acceptance

probability is a function of T , in that way it decreases
during the course of the simulation to a number close

to zero. Every value assigned to T (and affecting the

acceptance probability) will be used for SAiter differ-

ent choices of potential solutions. The pseudo code of
the simulated annealing we use here is as follows:

Algorithm 1. Pseudo code for simulated annealing

1. Initialize T0, Tf e SAiter

2. Generate initial solution xc

3. T = T0

4. while T > Tf do

5. for r = 1 to SAiter do

6. Compute xn ∈ N(xc) (neighbor to current solution)

7. Compute ∆ = f(xn)− f(xc) and generate u from a
uniform random variable between 0 and 1

8. if (∆ < 0) or e−∆/T > u then xc = xn

9. end for

10. T = αT
11. end while

2.2 Threshold accepting

The threshold accepting (TA) algorithm is an optimiza-

tion algorithm which is a modification of the simulated
annealing where the sequence of temperatures T is re-

placed by a sequence of thresholds τ . Statement 8 of

algorithm 1 is replaced by:

if ∆ < τh then xc = xn

and in statement 10 we use the threshold τ ≥ 0

instead of the temperature T. That is, TA uses a de-

terministic acceptance criterion instead of the proba-
bilistic one in simulated annealing for accepting worse

solutions. During the optimization process the thresh-

old level is gradually lowered like the temperature in

simulated annealing.

It was introduced by (Dueck and Scheuer, 1990).

They applied the algorithm to a Travelling Salesman

Problem and argued that their algorithm is superior

to classical simulated annealing. The main advantages
of TA are its conceptual simplicity, easy parameteriza-

tion and its excellent performance for many problem in-

stances. Threshold accepting has been successfully ap-

plied to different areas of statistics and econometrics
(Winker and Fang, 1997; Fang et al., 2000; Winker,

2000; 2001; Gilli and Winker, 2004). An extensive in-

troduction to TA is given in (Winker, 2001).

2.3 Genetic Algorithm

Genetic algorithms (GA), inspired by (Holland, 1975),

imitate the evolution process of biological systems, to

optimize a given function. In a GA there is a set of
candidate solutions denoted by a population of chro-

mosomes (binary vectors or different encoding) each

one having a fitness value that is derived from the suc-

cess of the chromosome in optimizing the function (i.e.
the function value at the corresponding solution). That

fitness value determines the probability of a chromo-

some to be selected as a parent. Children are formed

by recombining the genetic material of their two par-

ents (crossover) and perhaps after a random alteration
of some of the genes (single digits of the chromosome)

which is called mutation (see Holland, 1975; Goldberg,

1989, for a detailed description). The pseudo-code for

the versions of the GA we use here is as follows:

Algorithm 2. Pseudo code for genetic algorithm

1. Set the values of the parameters regarding population size
(pop), probability of crossover (pcross), probability of muta-
tion (pmut), number of generations (gen) and all the other
parameters relevant to this application.

2. Generate initial population of chromosomes representing pos-
sible outlier combinations.

3. Calculate the fitness values of these chromosomes.
4. Select two of these chromosomes to become parents, with

probability proportional to their fitness.
5. If crossover is used (depending on the probability for

crossover mentioned above), combine the genes of these chro-
mosomes using the crossover operator to form two children
chromosomes. In the case no crossover is applied, the chil-
dren chromosomes will be initially, just copies of the parent

chromosomes.
6. Then apply the mutation operator to the children chromo-

somes, so that some (if any) random bits of the children chro-
mosomes are altered.

7. Repeat steps 4-6, until pop children chromosomes have been
formed.

8. Repeat steps 3-7 until the specified number of generations
(gen) have passed.

3 Algorithm Features

In this section we describe the features of the algorithms

we used for outlier detection.

3.1 Solution Coding

For TA and SA we use the same coding for the solu-
tion as suggested in (Baragona et al., 2001). Briefly, a

solution xc is a binary string with length N , where N

is the number of observations of the time series. So let

4

xc = (xc
1
, xc

2
, ..., xc

N) where xc
i takes the value 1 if at

the time i there is an outlier and 0 if i is outlier-free.

We use this coding for both univariate and multivariate

time series, in the latter case we just indicate the times

where there are outliers but we don’t specify in which
components they occur. For the genetic algorithms we

use two different forms of chromosome encoding. The

first is the same as in the cases of TA and SA, i.e. the

solutions are denoted as binary encoded strings. In sec-
ond the chromosome consists of g integer fields where g

is the maximum number of outliers that can be present

in the time series. Each field can take all integer val-

ues from 1 : N , that state the position of the outlier in

the time series. We also consider the chromosome cor-
responding to no outliers in the time series. The binary

coding implies that the a priori solution space Ω0 is

composed of
∑N

k=0

(

N
k

)

distinct elements. However, if

the total number of outliers is limited to a constant g,
as it seems reasonable, the solution space Ω consists of
∑g

k=0

(

N
k

)

distinct elements. We can see that Ω is really

large even if g is considerably lower than the length of

time series. All algorithms either hardly penalize chro-

mosomes that have more than a maximum number of
outliers g, or do not consider these chromosomes at all.

TA and SA algorithms are built so that they do not

evaluate solutions with more than g outliers.

As concerning the GA algorithms, in the case of in-

teger encoding, it is impossible to access a chromosome

that belongs to Ω0 but does not belong to Ω, and there-

fore the solution space is actually Ω. In the binary case,
chromosomes that do not belong to Ω are severely pe-

nalized, and the algorithms tend to avoid these chromo-

somes. As we have mentioned the binary encoding suf-

fers from the fact that chromosomes with more outliers

than the maximum needed are active in the popula-
tion, increasing the total time required for the execution

of the algorithm. The integer encoding scheme suffers

from another complication, the possible replications of

solutions in the set of chromosomes. That is, if more
than one gene in a chromosome holds the same value,

we assume they all “point” to the same outlier, i.e. the

chromosomes say [1, 15, 1] and [1, 1, 15] denote the same

solution, the one with outliers at data positions 1 and

15. The comparison of the efficiency of the two encod-
ing schemes can be studied by the introduction of two

indices of efficiency(EB and EI). In the binary case, one

can define an efficiency measure, as the ratio between

the number of admissible chromosomes (chromosomes
having no more than the maximum number of outliers)

and the total number of chromosomes. So if we denote

by N the number of available observations of the time

series, and g the maximum number of outliers, then

EB =

∑g

j=0

(

N
j

)

2N

In the case of integer encoded chromosomes, the effi-

ciency measure should be the ratio between the number

of chromosomes needed to encode the possible outlier
combinations in a “one-to-one” correspondence (which

is equal by definition to the number of possible outlier

combinations) and the total number of chromosomes,

and therefore

EI =

∑g
j=1

(

N
j

)

Ng

The relative efficiency of the binary versus the integer

encoding scheme can be defined as the ratio of the two

RB>I =
EB

EI

=
Ng

2N
·

∑g

j=0

(

N
j

)

∑g
j=1

(

N
J

) ≈
Ng

2N

So the binary encoding scheme will be more efficient if

RB>I > 1 or

log2

Ng

2N
> 0 ⇒ g log2 N − N > 0 ⇒ g >

N

log2 N

i.e. when the maximum number of outliers is greater

than the ratio between the number of observations and
the number of bits required to represent that number

in the binary system.

3.2 Neighbourhood search in simulated annealing and

threshold accepting

Each solution xc ∈ Ω has an associated set of neighbours,

N(xc) ⊂ Ω, called the neighbourhood of ξ where every

xc′ ∈ N(xc) can be reached directly from xc by an op-
eration called move. We consider three different moves:

add an outlier; remove an outlier; change the position

of an outlier. Our target is to not allow xc to have more

than g outliers, so moves are applied according to the

current solution in the following ways: if xc doesn’t con-
tain outliers (i.e., it is a string where every bit takes the

vale 0), algorithms can only introduce an outlier; if xc

contains less than g outliers, algorithms can add or re-

move an outlier with probability of 0.5; if xc contains
already g outliers, algorithms cannot proceed adding an

outlier but can only remove or change the position of

one of them again with the probability of 0.5.

5

3.3 TA: Sequence of threshold

The implementation of the TA algorithm requires set-

ting of the following control parameters: the definition

of neighborhoods for the choice of xn, the total number

of iterations and the sequence of thresholds τh. For the

TA implementation we used the neighborhood defini-
tion described in section 3.2. (Althöfer and Koschnick,

1991) demonstrated the convergence of the TA algo-

rithm under the hypothesis that an appropriate thresh-

old sequence exists . But in their proof they do not
provide a way to construct an appropriate sequence.

Consequently, several approaches have been proposed

in the literature. In extreme cases of threshold settings,

the algorithm behaves as a classical local search algo-

rithm (if all threshold values are set equal to zero) or
like a random walk (if all values of the threshold se-

quence are set to a very large value).

In our implementation we used the method pro-

posed by (Winker and Fang, 1997). The pseudo-code
of this procedure is reported below.

Algorithm 3. Pseudocode for generate threshold sequence

1. Initialize Nt, α e M

2. for r = 1 to M do

3. Randomly choose solution xc
r

4. Randomly choose neighbor solution xc
r ∈ N(xc

r)
5. Compute ∆r =| f(xc

r) − f(xn
r) |

6. end for

7. Sort ∆1 ≤ ∆2 ≤ ... ≤ ∆M

8. Use ∆Nt
, ...,∆1 as threshold sequence

The method uses a two step process to construct

the threshold sequence. For the first step a large num-

ber (M) of possible solutions xc is generated at ran-

dom. Then, we compute the distances between values
of the objective function at random points xc and its

neighbors xn, ∆r =| f(xc
r)−f(xn

r) |, r = 1, 2, .., M . The

second step of the construction consists in sorting these

values in descending order. So an approximation to the

distribution of local relative changes of the objective
function is obtained. Only α-lower fraction of sorted

sequence is used as the threshold sequence. Otherwise,

we can provide percentiles Pi, i = 1, ..., Nt and com-

pute the corresponding quantiles Qi, i = 1, ..., Nt. So,
the threshold sequence τi, i = 1, ..., Nt corresponds to

Qi, i = 1, ..., Nt. In both cases, the threshold sequence

will be monotonically decreasing to zero.

3.4 Objective function

Let zt = [z1,t, ..., zs,t]
′ be a s-dimensional jointly sec-

ond order stationary real-valued vector time series, with

mean zero for each component, covariance matrix Γu

and inverse covariance matrix Γiu for integer lag u.

Suppose that k disturbances ωt = [ω1,t, ..., ωs,t] hap-

pen to be located at time points t1, ..., tk. Then, given

N observations z1, ..., zN of time series zt the outlier

configuration may be described by means of the pat-
tern design matrix X. Let ij be the number of contam-

inated component series at time tj , j = 1, ..., k, and let

h = i1 + ...+ ik. In our implementation we suppose that

all outliers are global, then the integer h that represents

the number of the scalar outliers is equal to h = ks . For
each t = 1, ..., N consider the rows (t−1)s+r, r = 1, ..., s

of X. All entries in such rows are zero unless an out-

lier is present at time t. In this case, if i denotes such

scalar outlier, the entries in column i of these rows will
be unity. The Ns×h matrix X contains all information

about the given outlier pattern. In order to evaluate the

plausibility of every string the meta-heuristic algorithm

uses a objective function that assigns a real number to

every solution.

Let z = [z′1, ..., z
′

N]′ be the vector obtained by stack-
ing the s component observations at each time point,

and let Γ denote the Ns × Ns block Toeplitz matrix

with Γi−j as the (i,j)-th block. Assume, at this mo-

ment, that both Γ and X are known. Then, the natural
logarithm of the likelihood for z may be written, by

omitting all constant terms,

L = −
1

2
(z −Xω)′Γ−1(z −Xω) (2)

Maximization of (2) with respect to ω yields:

ω̂ = (X′Γ−1X)X′Γ−1z (3)

if we approximate Γ−1 with Γi (Shaman, 1976),

where Γi denotes the Ns × Ns block Toeplitz matrix

with Γii−j as the (i,j)-th block; then, the maximum
likelihood estimate (3) of ω takes the form:

ω̂ = (X′ΓiX)X′(I ⊗ Γi0)e (4)

where e = [e’1, ..., e’N] is the interpolation error
(Bhansali and Ippoliti, 2005). Equality (4) establishes

in the multivariate framework the relationship between

the additive outlier and the linear interpolator. There

are different ways to estimate the inverse covariance

matrices, but we used the formula suggested by (Battaglia,
1984).

The natural logarithm of the maximized likelihood

is obtained, by replacing, in (2), ω with (4) and Γ−1

with Γi:

6

L = −
1

2
{X(I ⊗ Γi0)e}

′(X′ΓiX)−1X′(I ⊗ Γi0)e (5)

where all constant terms are omitted. As L increases

with the number of outliers, a generalized Akaike’s in-
formation criterion (Bhansali, 1986) is used. So, the

function which has actually to be minimized is:

AIC = −2L + ch (6)

where c is an arbitrary constant and h is the ac-

tual number of outliers. The function AIC, however,
depends on both the integer h and the matrix X in (5).

The integer parameter h varies from 0 to the maximum

prespecified allowed number of scalar outlying observa-

tions g.

3.5 Parent selection and other implementation issues

in the Genetic Algorithms

In both the binary and the integer cases, we use ordered

fitness, i.e. we rank the chromosomes in descending or-
der of AIC (with an additional penalty factor in the

binary case) and then assign a fitness value of “1” to

the chromosome with the highest AIC value in the pop-

ulation, “2” to the chromosome with the second highest

AIC value and so on.

We don’t use the “standard” random generated ini-

tial populations (Goldberg, 1989). In the algorithms

used here, the initial populations consist of chromo-

somes with just one outlier, different each other (which
implies that the size of the population is less than the

number of observations). At the beginning, all possible

single-outlier chromosomes are generated and sorted in

terms of AIC value. Then the initial population is cre-
ated, consisting of the chromosomes that have the low-

est AIC values.

The “roulette wheel” rule is used for parent selec-

tion. The probability of a chromosome to be selected
as a parent is proportional to its fitness. The crossover

operator used is “uniform crossover” (Goldberg, 1989).

For any given gene of the first child one of the parents

is selected at random (with equal probability) and its

corresponding gene is inherited at the same position of
the child chromosome. The other parent is used to de-

termine the second child’s corresponding gene. Finally,

a fixed probability is defined for randomly changing the

value of each gene of the child-chromosome (mutation).
The entire population of chromosomes is replaced from

the offspring created by the crossover and mutation pro-

cesses at each generation.

In the binary encoding case, where we have only

two admissible values for a gene (“0” and “1”) the ap-

plication of the mutation operator is pretty straightfor-

ward. In the integer case however, the mutation opera-

tor must be adjusted to the fact that the set of possible
gene values contains more than two elements. So, in

case of a mutation, we have chosen to assign to the

gene a uniformly distributed random value, from the

set of allowable values (0 . . .N). The two variants do
not differ when it comes to the other issues discussed

here (crossover, stopping criterion, ecc.). Parents selec-

tion and crossover is done as in the binary case, each

chromosome has selection probability proportional to

its fitness, and the uniform crossover operator is em-
ployed for crossover. The same policy is used for the

population of the subsequent generations as well. The

entire population of a subsequent generation consists of

the children chromosomes, i.e. no elitism is used.

4 Examples of application

We applied the proposed methods to three time series:

the first is a simulated time series and the last two are

real data. Each of them has already been analysed in

the literature.

There are two types of parameters we have to de-

termine. One concerning the outlier problem on itself

and the other regarding the parameters of the meta-
heuristic algorithms. The parameters of the outlier de-

tection problem are three: the constant c in (6), the

order of the linear interpolator m, and the maximum

number of outliers g. When it comes to the genetic algo-

rithms, choices have to be made regarding the crossover
probability (pcross), mutation probability (pmut), pop-

ulation size (pop) and number of generations -or termi-

nation criterion- (gen). For the binary encoded GA we

also have to choose the factor for penalizing the objec-
tive function in case we have more outliers than the

desired number. For the simulated annealing algorithm

we have to determine the initial temperature (T0), final

temperature (Tf), number of internal loop iterations at

every temperature (SAiter), and the constant α in (1),
that characterizing the cooling schedule. Threshold ac-

cepting requires two parameters: the number of thresh-

olds (Nt) and the number of internal loop iterations at

every threshold (TAiter).

For each time series under consideration, we use

c=10 and m=4. Since there are no rules for deciding the

values of the parameters of the meta-heuristic methods,
we used an empirical process to determine their values.

We observed for a number of different parameter sets

the evolution of the best solution’s value of the objec-

7

tive function and chose the parameter set that seems to

bring the best convergence properties to those values.

Example 1. The first example is the simulated time

series used in (Tsay et al., 2000). The trivariate AR(1)

model is in the form xt = Φxt−1 + εt with parameters
given by

Φ =





0.2 0.3 0.0

−0.6 1.1 0.0
0.2 0.3 0.6



 Σ =





1.0 0.2 0.2

0.2 1.0 0.2
0.2 0.2 1.0





where Σ is the covariance matrix of {εt}. The eigen-
values of the matrix parameter are (0.5, 0.6, 0.8).

The simulated time series we employ has 200 observa-

tions. We have applied our methods to 500 realizations

of the model, introducing two outliers at time indices

t=100 and t=150, respectively, both having a magni-
tude of ω =(3.5 3.5 3.5)′.

We ran the simulated annealing algorithm with T0=

3.0, Tf= 0.05, SAiter = 100, α = 0.95, threshold ac-

cepting with Nt = 30 and TAiter = 333, the binary en-
coded genetic algoritm with pcross = 1, pmut = 0.001,

pop = 30, gen = 300, penalty factor pen = 1000 and

the integer encoded GA with pcross = 1, pmut = 0.04,

pop = 30, gen = 300. The parameter g = 5 for all

algorithms.

Table 1 Comparison of the algorithms’ results’ frequencies
among meta-heuristic methods and the detection procedure of
Tsay, Peña & Pankratz (2000)

Outliers found at SA TA GA1 GA2 TPP

t=100, 150 0.832 0.832 0.772 0.668 0.402
t=100 0.006 0.000 0.000 0.000 0.0148
t=150 0.002 0.000 0.000 0.000 0.0164
t=100, 150, . . . 0.152 0.152 0.150 0.262 0.000
t=100, . . . 0.002 0.000 0.000 0.000 0.000
t=150, . . . 0.006 0.000 0.000 0.000 0.000
P

. . . 0.160 0.152 0.150 0.262 0.000
none found 0.000 0.016 0.078 0.070 0.286

In Table 1 we compare the results coming from the

four algorithms and the detection procedure of (Tsay

et al., 2000)(TPP). In the TPP method we set the
empirical quantile of the Jmax(A, hA) statistic equal

to 33.04 corresponding to a significance level of 0.05%

(Tsay et al. (2000), pag 797). The rows show the per-

centage of the following events happening: outliers found

at times 100 and 150, only at 100, only 150, at 100 and
150 as well as others, at 100 and others, at 150 and

others, the sum of the events where incorrect positions

have been detected and in the last row the event that

no outlier was found at all. We can see that SA and
TA identify both outlier locations correctly with the

higher frequency (83.2% for both). The two GA’s algo-

rithms detected them with frequency of 77.2% (GA1)

Table 2 Outliers’ magnitude and standard deviation estimations

t=100

SA 3.4119 3.4424 3.4816
(0.8444) (0.7621) (0.8007)

TA 3.4070 3.4369 3.4791
(0.8501) (0.7645) (0.7997)

GA1 3.2161 3.2371 3.2555
(0.8070) (0.7267) (0.7847)

GA2 3.1953 3.2250 3.2534
(0.8068) (0.7278) (0.7946)

TPP 3.7929 3.8859 3.8083
(0.7656) (0.6428) (0.7708)

t=150

SA 3.4100 3.4629 3.4814
(0.8092) (0.6876) (0.7814)

TA 3.4071 3.4577 3.4776
(0.8116) (0.6888) (0.7796)

GA1 3.1702 3.2140 3.2475
(0.7512) (0.6480) (0.7492)

GA2 3.1688 3.2119 3.2332
(0.7601) (0.6479) (0.7555)

TPP 3.8114 3.8068 3.8018
(0.7818) (0.6569) (0.7888)

and 66.8% (GA2), while frequency of corrected detec-

tion for TPP is 40.2%. All four meta-heuristic algo-

rithms find in several runs the outliers at positions

100 and 150 as well as others. We almost always ob-

served that magnitude of the wrong detected outliers
is small and its standard error is large. So, a rejection

of these wrong detections is highly probable. Assum-

ing that, meta-heuristic methods reach the exact so-

lution in more than 93% of replications. Concerning
the TPP method, it does never find wrong solutions

but the number of time where none solution is found

is significant. We observed that these results are due

to a high value of the used empirical quantile of the

statistic Jmax(A, hA). Indeed using lower values for the
Jmax(A, hA) the TPP method improves the frequency

where both outliers are detected through the frequency

of incorrect outliers detections obviously also increases.

For example with Jmax(A, hA)=28.9, corresponding to
a significance level of 0.1, the frequency of the corrected

detections of both outliers is 64.8%. In Table 2 the esti-

mated magnitude and standard deviation of outliers are

reported. The SA and TA provide a better estimation of

ω, both the GA’s algorithms tend to underestimate the
value of magnitude of outliers while the TPP method

overestimates ω.

Example 2. The second example is the gas–furnace

series of (Box et al., 1994). This bivariate time series

consists of an input gas rate in cubic feet per minute and

the CO2 concentration in the outlet gas as a percentage,
both measured at 9–second time intervals. There are

296 observations. This series, too, has been analyzed

by (Tsay et al., 2000) where they found multivariate

8

Table 3 Meta-heuristic algorithms solutions for the gas–furnace
series

Solution Fitness Locations

S1 -86.52 43 55 133 199 235 265
S2 -86.14 42 55 133 199 235 265
S3 -81.68 43 55 133 198 235 265
S4 -86.52 42 55 133 198 235 265

outliers at positions 43, 55, 133, 199, 236, 265, 288 and

287.

When we use 100,000 iterations (T0= 8.0, Tf= 0.05,

SAiter = 200, α = 0.99, gen=3000, pop=30, Nt=100

and TAiter = 1000) all algorithms converge to the so-

lution with six outliers at positions: 43, 54, 113, 199,

235, 264. The objective function’s value is -86.52.

For a more detailed comparison between the algo-

rithms, we did 100 runs of each one of them, but we had
to use 10,000 iterations (T0= 2.5, Tf= 0.05, SAiter =

100, α = 0.96 for simulated annealing, while the values

of GA and TA parameters are the same as in the case

of artificial time series) due to computational power re-
strictions. In this case we set g = 15. The results are

shown on figure 1. We obtained four different final so-

lutions. The most frequent result for every algorithm is

the same fitness function obtained during the experi-

ment with 100,000 iteration (-86.52). The SA and TA
algorithms reach this solution with higher frequencies

than both GA algorithms. This means that TA and SA

require less iterations to reach the optimum, so they

explore the solution space more efficiently. Table 3 re-
ports the position of outliers corresponding to the four

found final solutions. We can see that the solutions are

similar, in particular S2, S3 and S4 differ from S1 only

on the presence of outliers at positions 42 and/or 198

instead of 43 and/or 199. The iterative detection proce-
dure of (Tsay et al., 2000) also considers these positions

as possible locations of outliers.

Example 3. Series A data are the concentration read-

ings of a chemical process recorded at two hours interval

with a total of 197 readings. Chang et al. (1988) re-

port the identification of an IO at t=64 and of an AO
at t=43. Other contributions point out the same loca-

tion as potential outliers (McCulloch and Tsay, 1994;

Luceño, 1998; Baragona et al., 2001). Fig. 2 reports the

final results frequencies based on 100 runs for each al-

gorithm. We used the same value of parameters applied
for gas–furnace series. The best solution is -444.99 cor-

responding to the outliers at positions 43 and 64. We

can see that SA and TA always found these outliers.

GAs algorithms reach that solution with at least a fre-
quency of 0.8. Both found other types of final solution:

-444.66 corresponding to outliers at positions 32, 43 and

64 and -443.8 corresponding to outliers at position 43,

−86.52 −86.14 −81.68 −81.3

0
10

20
30

40
50

60
70

TA
SA
GA1
GA2

Fig. 1 Best solutions’ frequencies of the meta-heuristic methods
for gas–furnace series

−444.99 −444.66 −443.8

0
20

40
60

80
10

0

TA
SA
GA1
GA2

Fig. 2 Best solutions’ frequencies of the meta-heuristic methods
for series A

64 and 190. Times 190 and 32 correspond to the largest

and to the second largest observation.

5 Conclusions

In this paper three meta-heuristic methods for detect-
ing additive outliers in multivariate time series were

proposed. Meta-heuristic algorithms, unlike other pro-

posed methods in literature, do not identify and re-

move outliers one at a time, but, examine several pro-
posed outlier patterns, where all observations that are

possibly outlying ones are simultaneously considered.

This feature seems to be effective in handling masking

9

(meaning that one outlier hides others from being de-

tected) and swamping (when outliers make other clean

observations to appear outliers as well) effects caused

by multiple outliers. Furthermore, our methods do not

require the specification of an adequate multivariate
model, which is a difficult task, especially when the data

are contaminated by outliers. The procedures were il-

lustrated by analyzing artificial and real data sets. The

results obtained from the simulation experiment seem
to support the view that the meta-heuristic algorithms

constitute a valid approach to detect the time points

where potential outliers in vector time series are lo-

cated. In our experiment the meta-heuristic methods

provide better results than the procedure based on the
vector ARIMA model for the data. The examination

of real time series, the “gas–furnace” data and “series

A” of Box and Jenkins yielded satisfactory results. For

first time series, the comparison with the results ob-
tained by the detection procedure of (Tsay et al., 2000)

showed that, in two cases, both approaches detected

the same outliers’ locations. This happened in spite of

the fact that the two identification procedures are very

different. In other cases, discordant detections may be
easily explained. In addition, the estimates from both

approaches, are very close as far as both the magnitudes

and their standard errors are concerned. Meta-heuristic

procedures, however, may jointly perform both the out-
lier detection and the estimation steps, while, in the

TPP approach, only the joint outlier estimation may

be performed.

For the proposed procedures and TPP method the

outlier set often changes if different values of constant c

in (6) or quantile of Jmax(A, hA) are used. If the critical
value Jmax(A, hA) (or c) is too large, the percentage of

outlier detection will be low. When a smaller critical

value is employed, the percentage of outlier detection is

increased. However, the frequencies of spurious outliers
detections is also increased.

The efficiency of meta-heuristic methods crucially

depends on the choice of appropriate values for some

control parameters. Several alternatives were tried. The

most sensitive GA parameter is the mutation rate. SA
and TA algorithms were robust concerning the choice of

the initial temperature and the sequence of thresholds

respectively. If the initial temperature or threshold are

too high, then the algorithms need a large number of

iterations.

Acknowledgements Support from the EU Commission through
contract Marie Curie Research Training Network COMISEF MRTN-
CT-2006-034270 is gratefully acknowledged. The authors would
like to thank Prof. Francesco Battaglia and Prof. Roberto Barag-
ona for the numerous conversations on this subject and for their
many suggestions during the preparation of the work.

References

I. Althöfer and K.U. Koschnick. On the convergence of

threshold accepting. Applied Mathematics and Opti-

mization, 24:183–195, 1991.

R. Baragona and F. Battaglia. Outliers detection in

multivariate time series by independent component
analysis. Neural Computation, 19:1962–1984, 2007.

R. Baragona and F. Battaglia. Identificazione e stima

di dati anomali in serie temporali per mezzo di inter-

polatori lineari. Technical Report 19, University of
Roma La Sapienza, Italy, 1989.

R. Baragona, F. Battaglia, and C. Calzini. Genetic al-

gorithms for the identification of additive and inno-

vational outliers in time series. Computational Statis-

tics and Data Analysis, 2001.
M.M. Barbieri. Outliers in serie temporali multivariate.

Quaderni di Statistica e Econometria, 13:1–11, 1991.

F. Battaglia. Inverse covariances of a multivariate time

series. Metron, 42:117–129, 1984.
F. Battaglia and R. Baragona. Linear interpolators and

the outlier problem in time series. Metron, 50:79–97,

1992.

R. J. Bhansali. A derivation of the information crite-

ria for selecting autoregressive models. Advances in
Applied Probability, 18:360–387, 1986.

R.J. Bhansali and L. Ippoliti. Inverse correlations for

multiple time series and gaussian random fields and

measures of their linear determinism. J.Mathematics
and Statistics, 1:287–299, 2005.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time

Series Analysis. Forecasting and Control (3rd edi-

tion). Prentice Hall, Englewood Cliffs, New Jersey,

1994.
I. Chang and G. C. Tiao. Estimation of time series

parameters in the presence of outliers. Technical

Report 8, University of Chicago, Statistics Research

Center, 1983.
I. Chang, G. C. Tiao, and C. Chen. Estimation of time

series parameters in the presence of outliers. Tech-

nomeirics, 30:193–204, 1988.

C. Chen and L. Liu. Joint estimation of model param-

eters and outlier effects in time series. Journal of the
American Statistical Association, 88:284–297, 1993.

G. Dueck and T. Scheuer. Threshold accepting: A gen-

eral purpose algorithm appearing superior to simu-

lated annealing. Journal of Computational Physics,
90:161–175, 1990.

K.T. Fang, D. K. J. Lin, P. Winker, and Y. Zhang. Uni-

form design:theory and application. Technometrics,

42:237–248, 2000.

A. J. Fox. Outliers in time series. Journal of the Royal
Statistical Society, Series B 34:350–63, 1972.

10

P. Galeano, D. Peña, and R. S. Tsay. Outlier detec-

tion in multivariate time series by projection pursuit.

Journal of the American Statistical Association, 101:

654–669, 2006.

M. Gilli and P. Winker. Applications of optimiza-
tion heuristics to estimation and modelling problems.

Computational Statistics and Data Analysis, 47:211–

223, 2004.

D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. AddisonWesley,

Reading, 1989.

V. Gómez, A. Maravall, and D. Peña. Computing miss-

ing values in time series. Working Paper 93-27 Statis-

tics and Econometric Series 21, Departamento de Es-
tadistica y Econometria Universidad Carlos III de

Madrid, 1993.

J.M. Holland. Adaptation in natural and artificial sys-

tems: an introductory analysis with applications to
biology, control and AI. The University of Michigan,

Ann Arbor, MI, 1975.

R. Khattree and D.N. Naik. Detection of outliers in bi-

variate time series data. Communications in Statis-

tics - Theory and Methods, 16(12):3701–3714, 1987.
S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi. Opti-

mization by simulated annealing. Science, 220:671–

680, 1983.

G. M. Ljung. A note on the estimation of missing val-
ues in time series. Communications in Statistics -

Simulation and Computation, 18(2):459–465, 1989.

G. M. Ljung. On outlier detection in time series. Jour-

nal of the Royal Statistical Society, Series B, 55:559–

567, 1993.
A. Luceño. Detecting possibly non-consecutive outliers

in industrial time series. Journal of the Royal Statis-

tical Society Series B, 60:295–310, 1998.

R. E. McCulloch and R. S. Tsay. Bayesian analysis
of autoregressive time series via the gibbs sampler.

Journal of Time Series Analysis, 15:235–250, 1994.

N. Metropolis, A. W. Rosenbluth, A. H. Teller, and

E. Teller. Equation of state calculation by fast com-

puting machines. J. of Chem. Phys., 21:1087–1091,
1953.

D. Peña. Influential observations in time series. Jour-

nal of Business and Economic Statistics, 8:235–241,

1990.
V.J. Rayward-Smith, I.H. Osman, C.R. Reeves, and

G.D. Smith. Modern Heuristic Search Methods. Wi-

ley, Chichester, New york, 1996.

P. Shaman. Approximations for stationary covariance

matrices and their inverses with applications to arima
models. Ann. Statist., 4:292–301, 1976.

R. S. Tsay. Time series model specification in the pres-

ence of outliers. Journal of the American Statistical

Association, 81:132–141, 1986.

R. S. Tsay. Outliers, level shifts, and variance changes

in time series. Journal of Forecasting, 7:1–20, 1988.

R.S. Tsay, D. Peña, and A.E. Pankratz. Outliers in mul-

tivariate time series. Biometrika, 87:789–804, 2000.
P. Winker. Optimized multivariate lag structure selec-

tion. Computational Economics, 16:87–103, 2000.

P. Winker. Optimization Heuristics in Econometrics

and Statistics: A simple approach for complex prob-
lems with Threshold Accepting. Wiley, New York,

2001.

P. Winker and K.T. Fang. Application of threshold

accepting to the evaluation of the discrepancy of a

set of points. SIAM Journal on Numerical Analysis,
34:2028–2042, 1997.

	cover_page
	OutliersDetection.pdf

